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Generic camera calibration is a non-parametric calibration technique that is applicable to any type of
vision sensor. However, the standard generic calibration method was developed such that both central
and non-central cameras can be calibrated within the same framework. Consequently, existing paramet-
ric calibration techniques cannot be applied for the common case of cameras with a single centre of pro-
jection (e.g. pinhole, fisheye, hyperboloidal catadioptric). This paper proposes improvements to the
standard generic calibration method for central cameras that reduce its complexity, and improve its accu-
racy and robustness. Improvements are achieved by taking advantage of the geometric constraints result-
ing from a single centre of projection in order to enable the application of established pinhole calibration
techniques. Input data for the algorithm is acquired using active grids, the performance of which is char-
acterised. A novel linear estimation stage is proposed that enables a well established pinhole calibration
technique to be used to estimate the camera centre and initial grid poses. The proposed solution is shown
to be more accurate than the linear estimation stage of the standard method. A linear alternative to the
existing polynomial method for estimating the pose of additional grids used in the calibration is demon-
strated and evaluated. Distortion correction experiments are conducted with real data for both an omni-
directional camera and a fisheye camera using the standard and proposed methods. Motion
reconstruction experiments are also undertaken for the omnidirectional camera. Results show the accu-
racy and robustness of the proposed method to be improved over those of the standard method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

There is currently a trend towards increased use of wide-angle
dioptric and catadioptric cameras within the vision community
due to the richer feature set and greater persistence of vision that
these camera types provide. As a consequence of this trend, a num-
ber of models and calibration algorithms have recently been pro-
posed for such cameras. The most basic models extend the
pinhole camera model with one or two radial distortion terms
[26,7,31,12]. These methods become less accurate for wide-angle
and catadioptric lenses as the camera incorporates more distortion.
Many of the common distortion models (polynomial, divisional, ra-
tional) can be augmented with an increasing number of parame-
ters [13,30] to allow wider angle lenses to be calibrated.
However, they are not suitable for fisheye or catadioptric lenses
for which the field of view (FOV) exceeds 180�.

Several methods have been proposed that model wide-angle
cameras as radially symmetric imagers [27,28], thus simplifying
the unknown parameter set. In [27], distortion is modelled using
a varying focal length instead of an image displacement approach,
ll rights reserved.

unne).
allowing cameras with FOV greater than 180� to be modelled. The
complete class of single viewpoint catadioptric camera configura-
tions was derived in [1], and this has been the basis for the devel-
opment of parametric calibration models that are specific to a
particular camera/lens configuration, most notably types of central
catadioptric [16] and non-central catadioptric [17] cameras. The
equivalence between catadioptric projections and mappings of
the sphere was demonstrated in [8], resulting in a unifying model
for catadioptric cameras. Nevertheless, only a few methods have
been proposed that can model both dioptric (with FOV greater than
180�) and catadioptric cameras, i.e. a unifying model for all central
cameras [27,2].

All the above calibration techniques assume a parametric cam-
era model of some form, where the task is to estimate the (usually
small) set of model parameters. In contrast, a non-parametric ap-
proach was proposed by Grossberg and Nayar [9]. This general
camera model consists of a mapping in which each pixel is mapped
to the direction of a half-ray in space, together with an anchor
point. In principle, the ray direction for each pixel is completely
independent of the ray directions of the surrounding pixels, thus
allowing application to any type of central or non-central camera.
The calibration technique described in [9] uses two images of a
grid in different, known, positions. By determining the location
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seen by each pixel on each grid, the set of all camera ray directions
can be determined. A generalisation to this calibration method,
termed generic calibration, was proposed by Sturm and Ramalin-
gam [24], wherein the world transformation between grid posi-
tions is not known a priori. Here, the calibration consists of
determining the points seen by a pixel on each of three grids in un-
known orientations. Effectively this becomes the estimation of the
positions and orientations of each of the three grids, since knowl-
edge of these allows the world ray-plane intersections to be
determined.

The generic camera calibration process using planar calibration
targets, as proposed in [24,25], can be summarised as follows:

(1) Take a minimum of three initial images of a calibration grid
in different orientations. Images of a calibration grid in var-
ious additional orientations are required to completely cover
the image.

(2) For each pixel, determine the location seen by that pixel on
each grid.

(3) Linearly estimate the poses of the calibration grids, and the
effective centre of projection if the camera is central, using
this data and the known constraints.

(4) Refine the orientations of the initial grids and the ray direc-
tions in a bundle adjustment stage.

(5) Estimate the poses of the additional grids (in order to cali-
brate pixels that do not view any of the initial grids in step
(1)) using geometric constraints followed by bundle
adjustment.

(6) Store the ray directions (as Plücker matrices) in a look-up
table.

This calibration method will hereafter be referred to as the stan-
dard generic method.

Different variants of the standard generic method for calibra-
tion using planar targets have been proposed for central, axial,
and non-central cameras [24,21]. Nevertheless the generic calibra-
tion framework is the same for all camera types. That is, a collin-
earity constraint is applied to the intersection points of each
camera ray with the grids involved in the linear estimation stage.
The solution for the grid poses, and for the camera centre in the
case of central cameras, is obtained by solving equations that are
formed by enforcing this collinearity constraint. The central and
non-central models vary only in the method for solving these
equations. Standard central generic calibration is a specialisation
of the general generic method, and so the link between the pinhole
camera model and the geometric constraints of central cameras is
not considered in the central generic method. Additionally, since
the polynomial based pose estimation method of step (5) is the
same for both central and non-central cameras, it does not account
for known centrality. This paper presents a new generic calibration
method for cameras with a single centre of projection, hereafter re-
ferred to as the proposed generic method, that achieves improved
performance through the use of pinhole calibration techniques. It
proposes alternatives to steps 2, 3 and 5 of the standard generic
method that increase the accuracy of the calibration. The three
key contributions in this paper are as follows.

Firstly, the issue of specifying accurate input data is addressed.
In step (2), the location seen by each pixel on each calibration grid
must be determined. When that location is not exactly at a grid
feature point on a static calibration grid, it must be determined
by homographic interpolation between the grid features, as is done
in [24,25]. In theory, generic calibration can achieve pixel level cal-
ibration, and thus it seems appropriate to use pixel level data as in-
put to the algorithm. Such data can be obtained by the use of
spatio-temporally varying grids displayed on a flat screen monitor.
We have termed these grids ‘active grids’, and while this method
has been used before [9,22,5,4], no discussion has been proffered
on their performance for calibration purposes. An explanation of
active grids and an evaluation of their performance relative to
standard localisation techniques is presented in Section 2. Sec-
ondly, a novel method for the linear estimation of the camera cen-
tre and the initial grid poses is proposed. Within standard generic
calibration, the estimation of the camera centre and the initial grid
poses in the central calibration variant is complicated, partly due to
coupling of the variables to be extracted. In Section 3 active grids
are shown to facilitate other, more intuitive and more accurate
methods of determining the camera centre for central cameras.
Thirdly, a linear pose estimation stage is proposed for use in gen-
eric calibration as an alternative to the polynomial pose estimation
algorithm of Ramalingam et al. [21]. The linear pose estimation
algorithm is discussed and evaluated in Section 4. Together, the
above modifications serve to make the proposed generic method
for central cameras both more robust and more accurate than
the standard method. Simulations and experiments with real data
are presented in Section 5 that demonstrate the improved perfor-
mance. The effects of the modifications and the accuracy of the
complete calibration are shown and discussed.
2. Active grids

Binary chessboard grids are typically used in camera calibra-
tion, since the corners of the chessboard grid squares can be easily
extracted and accurately localised in images of the grids. This re-
sults in a dense set of grid to image correspondences. For the stan-
dard generic method, these correspondences must be used to
determine the intersection points of camera rays with the grid
(i.e. the location seen on the grid by each camera pixel). In most
cases, the intersection points will not lie exactly on a grid corner.
Therefore, homographic interpolation is employed in [24] to deter-
mine the intersection points based on the extracted image coordi-
nates of the four closest grid corner points. However, this approach
is unsuitable for high fidelity calibration, since any distortion pres-
ent in the images of the calibration grids introduces a bias in the
results. Fig. 1a shows a vector plot of the error residuals after
homographic interpolation is applied to 500 random points on a
300 mm� 300 mm grid (simulated camera with radial distortion).
The systematic bias in the plot increases with distance from the
image centre, suggesting it is primarily due to the radial distortion.
Interpolation bias can be reduced by decreasing the square sizes of
the calibration grids, although this approach is limited by the lim-
its of camera resolutions, or by applying collinearity constraints
[21]. Homographic interpolation has the additional disadvantage
of requiring local image continuity. The general camera model
makes no continuity assumptions, and can thus model discontinu-
ous cameras. By using calibration grids that require interpolation,
the applicability of generic calibration is reduced.

The use of active grids overcomes this problem with homo-
graphic interpolation by providing a direct localisation of the point
seen by every pixel viewing the active grid, thus enabling pixel-le-
vel calibration. An active grid is implemented using a flat-screen
TFT monitor that displays a temporal sequence of spatially varying
greyscale patterns. The location of any point on the active grid can
be decoded from the intensity displayed at that point across the se-
quence of patterns. We have used patterns from the domain of
structured light to encode location. This approach is similar in spir-
it to the approach used by Sagawa et al. [22] for distortion correc-
tion. The active grids implemented for the work in this paper
consist of 22 different patterns consecutively displayed on the
monitor. Fig. 1b shows the set of patterns that encode vertical loca-
tion. A more detailed description of the implementation of active
grids can be found in [6].
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Active grids overcome the distortion bias associated with
homographic interpolation and consequently are ideal for use in
the generic calibration process. Their performance with respect
to standard techniques for localising features on static calibration
grids is next examined. Corner detection in chessboard patterns
was recently shown to be invariant to both perspective bias and
distortion bias, and so to outperform non-corner based patterns
[15]. Consequently two chessboard corner localisation techniques,
one derivative based and one saddle-point based, were used for the
benchmarking process. If using a standard, static chessboard cali-
bration grid, these methods are typical of the localisation tech-
niques that would be used to subpixelly determine the grid
corners. The comparison between the active grids method and
these two standard methods is shown in Fig. 2. Details of the
experimental setup are provided in [6]. The robustness of active
grids to variations in camera-grid displacement, orientation, image
blur and additive Gaussian noise is seen in Fig. 2 to be superior to
that of the standard methods under almost all conditions. The
robustness of active grids to image blur is an important benefit
for the calibration process as it means that camera focus can be
fixed during calibration. Note that these tests determine the rela-
tive performance of the methods for detecting the grid corner loca-
tions, and they do not address the errors resulting from localising
points that are not grid corners (which would require bias inducing
interpolation and thus reduce the performance of the static grid
methods). It can be concluded from these results that active grids
have localisation accuracy and robustness equal to or exceeding
those of the standard methods for the detection of corners from
chessboard calibration grids. Combined with the lack of interpola-
tion bias, active grids are thus ideal for use in generic calibration,
where pixel-level localisation is a key requirement of the calibra-
tion process.

3. Linear estimation

The purpose of the linear estimation stage in central generic cal-
ibration is to determine the grid poses and the position of the cam-
era centre in the camera coordinate system attached to the base
(usually first) grid. The camera centre is the single point through
which all camera rays would pass if no reflection or refraction oc-
curred, thus the accuracy of the entire calibration is directly depen-
dent on the accuracy of the centre estimate. The linear estimation
stage of the standard central generic method is based on a collin-
earity constraint: for each ray, the camera centre and the world
coordinates of the intersection point of that ray with each grid
are collinear. This can be expressed mathematically by stacking
the global homogeneous coordinate for each intersection point in
a 4� 4 matrix. Collinearity is enforced by ensuring that all 3� 3
subdeterminants of this matrix are zero. Determining the camera
centre and plane positions and orientations from this starting point
for the standard central generic method is not straightforward. Sig-
nificant complexity arises due to coupling between many of the
unknowns. See [24,25] for a description of the algorithm. The equa-
tions necessary to solve for the unknowns are presented in detail in
[20]. Eqs. (20)–(39) in that paper, which are the same for both the
minimal and non-minimal scenarios, indicate the level of involve-
ment required to decouple the unknowns. As a further example of
the standard method’s complexity, the final equation to be solved
is non-linear in the unknowns, and a solution is determined only
by observing via simulation that several parameters are always
equal to 0.

An alternative linear estimation stage is next proposed that is
less complicated, and that is shown to be more accurate, than
the method of standard generic calibration.

3.1. Synthetic pinhole calibration

The proposed linear estimation stage results from a novel inter-
pretation of existing methods for the calibration of pinhole cam-
eras. As known, pinhole calibration techniques are not suitable
for wide FOV cameras due to the existence of severe non-linear im-
age distortion that invalidates the pinhole projection model. For
cameras with FOVs equal to and exceeding 180� the pinhole model
itself is invalid, since there is no image plane location and positive
focal length for which all 3-space points linearly projected through
the camera centre can intersect. However, pinhole calibration
methods are well established and it would be beneficial to utilise
this established theory. The proposed linear estimation method en-
ables such utilisation. The key idea is that an additional calibration
grid, referred to as the base grid, is used as a synthetic image plane
in the calibration process, thus forming a synthetic camera that is
exactly pinhole. By placing the base grid in front of the general
camera so as to intersect the camera rays on the object side of
the camera optics, as shown in Fig. 3, a distortion free image is
formed on the synthetic image plane. The synthetic image points
are the points of intersection of the rays with the inserted synthetic
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Fig. 3. Linear estimation of camera centre for proposed generic method. Synthetic image plane allows use of pinhole calibration techniques for determining centre.
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image plane. If this plane is an active grid, the intersection loca-
tions can be determined directly as described in Section 2.

Consider the camera pixels that view the object in Fig. 3. The
camera rays associated with these pixels are coincident at the cen-
tre of projection of the camera. Therefore the intersections of these
rays with an additional grid, the synthetic image plane, will be a
perspective projection of the object corners. By accurately deter-
mining the intersection points with the synthetic image plane of
all the camera rays that intersect the object, a pinhole image of
the object is formed on the synthetic image plane. Since the projec-
tion from the object through the synthetic image plane to the cen-
tre of projection preserves point collinearity, the synthetic image is
free of all distortion. The synthetic camera can then be calibrated
from at least two such synthetic images of a calibration grid in dif-
ferent positions. Any standard pinhole calibration method can be
used to achieve this calibration. Since the centres of the synthetic
and general cameras coincide, the desired estimate of the general
camera centre is directly available from the synthetic camera cali-
bration as ½px py f �T , where px and py are the principal point offsets
of the synthetic camera, and f is the synthetic camera’s focal length.
The pose of grids two and three can also be extracted from the syn-
thetic pinhole calibration using well known techniques [23]. Note
that there is no constraint on the placement or the pose of the
base grid acting as the synthetic image plane, once it is located
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externally to the general camera. The only prerequisites for the
proposed linear estimation are that the general camera is central
and that the calibration targets are planar with known calibration
patterns.

The non-linear calibration problem is thus linearised by moving
the calibration from a point at which the optics are non-linear to a
point at which they are linear. This new approach provides a key
link between the established theory of pinhole calibration and
the generic calibration of central cameras. A minimum of three
grids is required for the proposed linear estimation stage – two
for the pinhole calibration and one for the synthetic image plane
– which is the same number as required for the standard generic
method’s linear estimation stage. The benefits of active grids as
outlined in Section 2, in particular their ability to directly and accu-
rately provide ray-grid intersections points, make them ideal for
use as synthetic image planes in this method. Standard chess-
boards, in conjunction with homographic interpolation, could also
be used to form the synthetic image plane. However, in that case
the interpolation bias would introduce distortion into the synthetic
camera and so it could no longer be precisely modelled with a pin-
hole model.

In [22] Sagawa proposes a distortion removal scheme in which
an active grid is imaged, and the non-parametric mapping between
the active grid locations and the image pixel locations is subse-
quently determined. This differs from the proposed calibration
method in which a distortion-free image is directly formed for a
synthetic pinhole camera with known image plane, completely
removing the need for distortion correction.

A question arises as to which pinhole calibration technique
should be used for the proposed linear estimation stage. To answer
this, two well known pinhole calibration techniques, those of
Sturm [26] and Wang and Liu [29], were incorporated into separate
implementations of the proposed linear estimation stage. Both of
these techniques are based on the same underlying constraints
on the Image of the Absolute Conic (IAC), but they take different
approaches to determining the solutions. The relative performance
of these two implementations was evaluated, resulting in the con-
clusion that the method of Sturm is more accurate and robust than
the method of Wang for this application (see [6] for more details).
Therefore the pinhole calibration method of Sturm is used in the
proposed linear estimation stage. This method is based on the
IAC, x, and the corresponding relationship between the IAC and
the camera calibration matrix, K, given by x ’ K�T K�1, where ’
denotes equality up to a non-zero multiple.

3.2. Determining camera centre and poses of initial grids

The proposed linear estimation stage for n calibration grids pro-
ceeds as follows. Let Q ij be the intersection point of ray i with cal-
ibration grid j in a coordinate frame attached to grid j, and let the
pose of calibration grid j be given by Tj. The perspectivity, Hj, due to
central projection gives

Q i1½1 2 4� ’ HjQ ij½1 2 4�; 8i and j ¼ 2; . . . ;n ð1Þ

Each Hj results in the following two linear equations in the ele-
ments of x

h jT
1 xh j

1 � h jT
2 xh j

2 ¼ 0 ð2Þ
h jT

1 xh j
2 ¼ 0 ð3Þ

where h j
i is the ith column of Hj. The synthetic camera’s aspect ratio

and skew are determined by the properties of the grid that acts as
the synthetic camera’s image plane. By using an active grid imple-
mented on a TFT monitor that has square pixels and zero pixel
skew, the aspect ratio and skew are 1 and 0, respectively. The un-
known elements of x are then fx11;x13;x23;x33g. The three de-
grees of freedom correspond to the values of px; py and f. Since
the solution of x is up to scale, there are three camera parameters
to estimate, and in the minimal case there are four independent
equations resulting from H2 and H3, so the system to be solved is
actually overconstrained. The inhomogeneous camera centre, C,
after solving linearly for x using least squares, is given by

C ¼

�x13
x11
�x23
x11

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x11x33�x2

13
�x2

23

p
x11

0
BBB@

1
CCCA ð4Þ

The camera calibration matrix of the synthetic camera is

K ¼
C3 0 C1

0 C3 C2

0 0 1

0
B@

1
CA ð5Þ

where Ci is the ith element of C. Poses of the grids used in the linear
estimation stage with respect to the base grid acting as the syn-
thetic image plane can be extracted from the homographies Hj by
factorisation. Letting Gj ¼ K�1Hj, and with gj

i the ith column of Gj,

Rj ¼ s g j
1 g j

2 g j
1 � g j

2

� �
ð6Þ

tj ¼ sg j
3 þ C ð7Þ

s ¼ 1

mean kg j
1k kg

j
2k

� � ð8Þ

where Rj is the rotation matrix describing the rotational component
of the pose of grid j, tj is the translational component of the pose of
grid j, and s is a scale factor. The sign of s is chosen so that the planes
are located on the same side of C as the synthetic image plane. An
orthonormal rotation matrix can be obtained via the SVD as in [31].

The implementation of the proposed linear estimation stage re-
quires the computation of homographies between large corre-
sponding datasets. The size of the datasets is given by the
number of pixels that see both grids, typically in the region of
50,000 point pairs (a random subset of the point pairs can be used
to decrease homography computation time for very large point
pair sets). Homographies are determined within a RANSAC frame-
work that selects inliers as the point pairs that are in homographic
correspondence with one another. The Hjs are calculated using the
standard DLT with normalisation [11], and the RANSAC parameters
are selected based on the experimental results in Section 2. Outli-
ers can exist in the decoded data due to image shot noise, non-lin-
earities in the camera radiometric transfer function, and possible
incorrect decoding of active grids due to sharp local
discontinuities.

3.3. Bundle adjustment

In the standard generic calibration method, bundle adjustment
is applied to the result of the linear estimation stage in order to im-
prove the quality of the calibration result. The calibration result is
the look-up table that maps camera pixels to ray directions in 3-
space. For the general camera model, clearly it is the ray directions
that should be adjusted in any bundle adjustment scheme, but
there are several approaches to doing this. The rays are calculated
as the join of the camera centre, C, and the 3-space ray-grid inter-
section points of ray i with plane j, Pij. If the intersection points are
known for more than one grid then the centroid of these points can
be used. Also, Pij ¼ TjQij, where Tj is the pose of grid j. Thus the
parameters that determine the calibration of each camera pixel
are ½C; Tj�. Consequently the ray directions can be updated directly,
or updated by bundle adjusting one or both of ½C; Tj� for j ¼ 2; . . . ;n.

The first possible scheme is to adjust the ray directions directly
based on a ray-point distance metric. This is the scheme that is
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applied in the standard generic calibration method [21]. In this case
the ray directions, the camera centre C, and the Tjs, j ¼ 2; . . . ;n, are
bundle adjusted to minimise the ray-point distances, with all rays
forced to be concurrent at the current estimate of C. A second pos-
sible approach is to adjust the ray directions indirectly by optimis-
ing the Tjs, and forcing the rays to pass through the adjusted C and
the intersection points with the grids in the adjusted poses. For this
approach only C and the Tjs; j ¼ 2; . . . ;n, are directly adjusted.

In either approach, the ray-point distance measure suggested
by Ramalingam [21] can be used as the error metric. This metric
measures the perpendicular distance between the ith ray and the
Pij intersection points, and in this paper it is determined efficiently,
and without resorting to least-squares, using the dot product.
Given the ray direction Di, the closest point along Di to Pij is param-
eterised by kij as

Di � ðkijDi � ðPij � CÞÞ ¼ 0 ð9Þ
where C is the inhomogeneous camera centre, resulting in the fol-
lowing solution for kij

kij ¼ Di � ðPij � CÞ ð10Þ

The ray-point distance, dij, is then given by

dij ¼ kkijDi � ðPij � CÞk ð11Þ
¼ kðDi � ðPij � CÞÞDi � ðPij � CÞk ð12Þ

The bundle adjustment method that is applied in this paper is
the second approach described above, where C and the Tjs,
j ¼ 2; . . . ;n, are directly adjusted in order to minimise the geomet-
ric ray-point distance. After each bundle adjustment iteration, the
ray directions are recalculated in a least squares sense [3] as the
best fit rays to the new Pijs, determined by the updated Tjs, that
pass through the updated C. This is a relaxation optimisation, in
which the ray directions are indirectly updated at each iteration.
It involves the minimisation of 3þ 6ðn� 1Þ parameters – 3 param-
eters for C, and 6 parameters for each Tj; j ¼ 2; . . . ;n, using the
Rodrigues representation. The alternative approach described
above, in which the ray directions are directly updated in the bun-
dle adjustment, requires two additional parameters to be mini-
mised for each ray involved in the bundle adjustment (typically
1000s).

3.4. Simulated experiments

A comparison of the robustness to Gaussian noise of the linear
estimation stages of the standard and proposed generic calibration
methods is shown in Fig. 4. Errors in the estimation of the camera
centre, and in the translation and rotation of the second and third
grids involved in the linear estimation stage, are presented
(averaged over 50 trials). The ray-point error is the perpendicular
distance between each estimated ray and its known point of inter-
section with each calibration grid (see Section 3.3). These results
are for a simulated camera with camera centre ½0 0 600�T (in coor-
dinate frame of base grid), and with focal length and distortion
parameters chosen to simulate a wide angle camera with FOV of
100�. Results are shown for the standard generic method both with
and without bundle adjustment of the grid transformations; bun-
dle adjustment was not applied in the proposed linear estimation
stage in these experiments.

The results clearly show that the proposed linear estimation
stage without bundle adjustment outperforms that of the original
generic method with bundle adjustment across all levels of noise
tested. The results also indicate that bundle adjustment does not
significantly improve the calibration result for the standard generic
method, although the ray-point error is consistently reduced. Pos-
sibly this is due to a weak global minimum of the cost function,
which is evidenced by the relatively larger improvement due to
bundle adjustment at lower levels of noise compared to the
improvement at higher noise levels. The translation and rotation
error measures are indirect measures that are coupled in the trans-
formations, and so their errors cannot be considered indepen-
dently. Examination of the mean errors in the intersection point
locations after applying the transformations estimated by the stan-
dard generic method, and by the standard generic method with
bundle adjustment, reveal that the application of bundle adjust-
ment does indeed reduce this error, despite the larger rotation er-
rors for the standard method with bundle adjustment shown in
Fig. 4.

4. Pose estimation

Pose estimation is required during generic calibration in order
to increase the number of calibrated camera rays. Once the pose
of an additional grid is estimated, the camera ray associated with
each pixel that sees this additional grid can be included in the cal-
ibration. Exact solutions to the general pose estimation problem
can be found for either three or four non-collinear point-image
pairs by solving a fourth or higher degree polynomial [10]. How-
ever, closed form solutions to the general pose estimation problem
for more than four points are not straightforward [14]. In the
standard generic method [21] a geometric three point algorithm
for estimating the pose is described that operates for both central
and non-central cameras. Taking the central case, given calibrated
rays with directions Ri and Rj, and the distance dij between their
intersection points with the grid of unknown pose, the depths ki

and kj of the intersection points along Ri and Rj can be computed
by simultaneously solving kkiRi � kjRjk2 ¼ d2

ij for i; j ¼ ðl;m;nÞ;
i – j. However, when included in a RANSAC framework, re-estima-
tion of the pose using all inliers (typically the finally step in RAN-
SAC) is not possible using this algorithm. The method is also very
sensitive to additive noise (although a guided selection of suffi-
ciently separated points can alleviate this problem). To overcome
these drawbacks a linear least-squares solution to the pose estima-
tion problem is described that is applicable for central generic
calibration. Although the method does not minimise geometric
error, it is linear, fast, always gives a solution, and can conveniently
be incorporated within a RANSAC framework.

The method allows pinhole pose estimation to be applied to
central generic cameras through the use of a synthetic image plane.
By intersecting the previously calibrated camera rays that see
points on the unknown grid with the synthetic plane, the distor-
tion free pinhole projection of the unknown grid is formed on that
plane. Consider this synthetic plane as the image plane of a syn-
thetic pinhole camera, where the pinhole camera’s centre is coinci-
dent with the camera centre of the general camera. With reference
to Fig. 5, given a grid in the base position with world coordinate
points Xi 2 P3, and a grid with an unknown pose T relative to the
base grid containing unknown world points X 0i 2 P3, the goal is to
determine the unknown pose T. Although general cameras are usu-
ally not pinhole, a solution is possible via the insertion of the syn-
thetic image plane in a known orientation (the orientation
selection is discussed later) between the camera centre and the
grid with unknown pose, as shown in Fig. 5. Since the pose of
the synthetic image plane is chosen, all the intrinsic and extrinsic
parameters of the synthetic pinhole camera are known. They are
the camera projection matrix P, camera calibration matrix K, cam-
era rotation Rs, and camera centre C. Pose estimation can therefore
proceed using the established pinhole camera method that is de-
scribed in [23]. Note that the synthetic image plane is a mathemat-
ical construct only and is not physically realised. The general pose
estimation problem for central cameras is therefore cast as a pin-
hole pose estimation problem for which an established solution
is available.
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Fig. 4. Centre and transformation estimation performance plots versus Gaussian noise for standard generic method, standard generic method with bundle adjustment, and
proposed generic method (BA = bundle adjustment). The rotation error is defined as the sum of the out-of-plane and in-plane rotation errors. Note that the SDs for the
proposed generic method in these results are non-zero, but are significantly smaller in magnitude than the SDs of the standard generic method. The numerical data
underlying these plots is contained in the document cviu_09.pdf available in the additional results section of the CIPA code archive – www.cipa.dcu.ie/code.html.
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An outline derivation of the pose estimation equations can be
obtained by considering the point transformations shown in
Fig. 5 described by

x0i ’ PX0i ð13Þ
x0i ’ HXi½1 2 4� ð14Þ
X0i ’ TXi ð15Þ

By combining these equations and substituting P ¼ KRs½I � C�, it
follows that

ðKRsÞ�1H ’ ðt1 t2 t3 � CÞ ð16Þ

where ti is the ith column of T. Letting G ¼ ðKRsÞ�1H, and apply-
ing Eqs. (6)–(8), a solution for the rotation, bR, and the transla-
tion, t, of the grid with unknown pose can be determined. An
orthonormal rotation R is obtained from bR via the SVD. Non-lin-
ear minimisation can subsequently be applied to the linearly
estimated pose using the ray-point error metric described in
Section 3.3.
One is free to choose the orientation of the synthetic image
plane, after which the synthetic camera parameters are directly
determined. Ideally the synthetic image plane should be as close
as possible to perpendicular to the known rays involved in the pose
estimation process. This orientation can be determined in a least-
squares sense by minimising the sum of the angles between the
calibrated rays and the normal of the synthetic image plane, in a
similar way to [19]. The unit plane normal, n, is found as the solu-
tion to

argminn

Xm

i¼1

k½Di��nk2 subject to knk ¼ 1 ð17Þ

where Di is the unit vector representing ray i, and ½Di�� is its corre-
sponding skew-symmetric matrix.

The pose estimation schemes of the standard and proposed gen-
eric methods were evaluated against each other for both simulated
and real data. Both methods are incorporated in RANSAC frame-
works for all experiments. For the standard generic method pose

http://www.cipa.dcu.ie/code.html


Fig. 5. Proposed linear pose estimation method using synthetic image plane.
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estimation, the re-estimation stage in RANSAC is performed by
non-linear minimisation of the error metric described in Section
3.3. In the proposed method, RANSAC re-estimation uses the linear
pose estimation procedure described above. The robustness to
Gaussian noise of the pose estimation methods was first evaluated
for a synthetic wide angle camera with camera centre fixed at
½0 0 600�T . The translations and Euler rotations of the grid whose
pose was to be estimated were randomly chosen from
½�150 mm 150 mm� and [�30� 30�], respectively. The mean rota-
tional and mean percentage translational errors over 50 trials are
shown in Fig. 6. It is seen that the proposed generic method’s pose
estimation outperforms that of the standard generic method over
all simulated levels of noise.

The two pose estimation methods were also evaluated against
each other using real data, so that their robustness to outliers could
0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1
Rotati

σ noise

Er
ro

r (
de

gr
ee

s)

0 0.2 0.4 0.6 0.8
0

1

2

3

4
Transla

σ noise

Er
ro

r (
%

)

Proposed generic
Proposed generic + RANSAC
Standard generic + RANSAC

Fig. 6. Performance comparison for synthetic data of pose estimation stage of standar
method with RANSAC. The rotation error is defined as the sum of the out-of-plane and
be determined. The experiment consisted of a perspective camera
(Kodak MegaPlus 1.4i) imaging an active grid in two random orien-
tations. The camera was pre-calibrated using the plane-based
method of Sturm [26], allowing the ray-pixel look-up table to be
determined directly. A 3D laser scanner (depth resolution
<0.1 mm) was used to determine the ground truth transformation
between the two grids. The experimental results in Table 1 show
the errors in the estimated relative pose between the grids for each
pose estimation method. These results indicate the importance of
using RANSAC for the linear pose estimation, as without RANSAC
the linear pose estimates are seen to degrade significantly due to
outliers in the data. The larger error magnitudes of the real exper-
imental results relative to the simulated ones are due to the smal-
ler grids and larger camera-grid distances used in the real
experiments.
1 1.2 1.4 1.6 1.8

on error

 (pixels)

1 1.2 1.4 1.6 1.8

tion error

 (pixels)

d generic method with RANSAC, proposed generic method, and proposed generic
in-plane rotation errors.



Table 2
Camera centre and grid transformation estimates for omnidirectional and fisheye
camera calibrations, both before and after the application of bundle adjustment (BA).
Centre and translations are measured in mm, rotations are measured in degrees.

Camera Parameter Standard method Proposed method

Linear +BA Linear +BA

Omnidirectional C 168.05 168.00 167.90 168.07
156.20 159.37 159.82 160.33
�112.10 �115.43 �116.21 �116.90

R2 35.06 36.24 36.52 36.77
4.42 4.82 4.87 4.94

t2 135.20 138.63 139.66 140.76
R3 34.33 35.40 35.61 35.65

8.25 9.47 9.56 9.60
t3 188.78 191.11 192.13 192.45

Fisheye C 104.71 106.17 107.00 106.20
161.89 162.30 162.29 162.32
�125.69 �124.71 �124.01 �124.69

R2 43.09 42.65 42.33 42.66
5.17 4.90 4.84 4.89

t2 121.80 120.86 120.22 120.88
R3 37.55 37.09 36.84 37.09

6.03 5.90 5.83 5.90
t3 288.07 284.46 282.39 284.41

Table 1
Pose estimation errors for real data using pose estimation stages of standard generic
method with RANSAC, proposed generic method, and proposed generic method with
RANSAC. The rotation error is defined as the sum of the out-of-plane and in-plane
rotation errors.

Standard + RANSAC Proposed Proposed + RANSAC

Rotation error (�) 1.6265 1.6617 0.8706
Translation error (mm) 9.2662 17.7704 7.6266
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5. Experimental results

Both the standard and proposed generic methods are analysed
for real data with respect to linear estimation calibration parame-
ters, a ray-point error metric, distortion correction, and separate
motion reconstruction tasks. An omnidirectional catadioptric cam-
era and a camera with fisheye lens were used to capture the
images for the experiments. The omnidirectional camera consists
of a 360 OneVR hyperboloidal omnidirectional mirror1 mounted
on a Nikon D70 SLR digital camera. With the correct positioning
and alignment this catadioptric configuration has a single centre of
projection. However, the mirror could not be mounted directly onto
the camera due to limitations on the minimum focusing distance of
the camera lens, and thus an external bracket was used to fix the
configuration. Correct alignment with this could not be guaranteed.
The second camera used was a Nikon CoolPix 4500 digital camera at-
tached to a Nikon FC-E8 fisheye converter lens, which has a 183�
FOV. For each calibration method approximately 207� of the hori-
zontal FOV and approximately 82� of the vertical FOV of the omnidi-
rectional camera was calibrated; for the fisheye camera
approximately 94% of the entire FOV was calibrated. Three grids
were used in each calibration for the linear estimation stage, and a
further three grids for the omnidirectional and seven grids for the
fisheye cameras to extend the calibrated regions to include addi-
tional pixels. A minimal number of grids were used in the linear esti-
mation stage of calibration in these experiments in order to examine
the relative performance of the standard generic method and the
proposed generic method in the most challenging case. For high
fidelity calibration more than the minimum number of grids should
be employed. Active grids were used for all grids during calibration,
with the same images used as input to both calibration methods so
that direct comparisons between the standard generic and proposed
generic methods are not influenced by the type of input data. A
RANSAC stage is applied to the locations decoded from the active
grids in order to remove any incorrectly decoded location data.
Normalisation is applied in the computation of all homographies.

The estimates of the camera centre, and the estimated out-of-
plane and in-plane rotation angles and translation magnitudes
for the poses of the second and third grids used in the linear esti-
mation stages for each calibration method and for each camera are
shown in Table 2. Both linearly estimated and bundle adjusted val-
ues are presented. The difference between the linearly estimated
values of the camera centre for each method for the omnidirec-
tional camera is 5.48 mm, compared to 2.88 mm for the fisheye
camera. Similarly, linear estimates of the remaining calibration
parameters for each calibration method are larger for the omnidi-
rectional camera (within 15.8% of each other) than for the fisheye
camera (within 6.77% of each other). Considering the bundle ad-
justed values for each camera, it is clear that they converge to-
wards the same global values for each calibration method.
Importantly, excepting one value, these global values are signifi-
cantly closer to the linear estimates of the proposed method than
to the standard method’s linear estimates, indicating superior per-
formance of the proposed method’s linear estimation stage. In the
1 Kaidan Inc., Feasterville, PA.
case of the fisheye camera, the close agreement between the bun-
dle adjusted values for each calibration method indicate that a glo-
bal minimum in the solution space has been reached. In the case of
the omnidirectional camera 469 iterations were performed during
bundle adjustment. For the fisheye camera, the bundle adjustment
determined a global minimum solution after 412 iterations when
initialised with the standard method linear estimation values,
but after only 174 iterations when initialised with the proposed
method linear estimation values.

The ray-point error metric, described in Section 3.3, is applied to
each calibration dataset to give an indication of the relative errors
in the calibrations (ground truths for the camera centres and the
second and third grid positions are not known). Table 3 shows
the mean and standard deviation of the ray-point errors for each
method and for each camera, both before and after bundle adjust-
ment (rays involved in linear estimation stage only). The ray-point
errors for the omnidirectional camera calibration are smaller by a
factor of 8 for the proposed generic method than for the standard
generic method. There is less difference in the magnitude of the er-
rors for the calibration methods when applied to the fisheye cam-
era, but the mean and standard deviation of the errors before
bundle adjustment for the proposed generic method are smaller
than for the standard method. For both cameras, bundle adjust-
ment reduces the ray-point errors of the standard generic method
calibrations significantly. The relatively small ray-point errors for
the omnidirectional camera after bundle adjustment indicate that
misalignment of the omnidirectional mirror with the camera is
not significant. The difference in performance between the stan-
dard and proposed calibration methods is less for the fisheye cam-
era than for the omnidirectional camera. Additionally, the ray-
point error is similar across both camera types for the linear esti-
mates using the proposed generic calibration, but is different by
a factor of 5 for the linear estimates of the standard generic calibra-
tion. The results in Tables 2 and 3 indicate both the importance of
bundle adjustment for the standard generic calibration method,
and the superior initialisation for bundle adjustment that the pro-
posed generic calibration method provides. Note that bundle
adjustment is incorporated in the calibrations with both the pro-
posed generic method and the standard generic method for all
remaining results presented.

The centrality of the camera configurations after completion of
the linear estimation stage was examined to get further insight



Table 3
Ray-point errors (mm) for all rays involved in the linear estimation stage for each calibration method and for each camera (BA = bundle adjustment).

Method Error type Omnidirectional Fisheye

Error Error after BA Error Error after BA

Standard method Mean 1.6440 0.1413 0.3235 0.0727
SD 0.8186 0.0724 0.1579 0.0448

Proposed method Mean 0.1924 0.1281 0.1397 0.0727
SD 0.0906 0.0731 0.0709 0.0448
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into the quality of the calibrations. This was done by determining
the best-fit 3-space ray î to the world intersection points Pij of
ray i with grid j for j ¼ 1; 2; 3, which are estimated in the calibra-
tion. A method for least squares ray fitting in 3-space has recently
been presented in [3], but for the case of only three points an effi-
cient solution can be calculated similarly to the 2D case by fixing a
coordinate frame to the plane defined by the join of the Pijs for each
i, given by the null vector of ½Pi1 Pi2 Pi3�T . The rays î can then be
intersected with a plane passing through the estimated camera
centre C that is closest to perpendicular to the îs (see Section 4
for a method of calculating this plane). The distribution of the
intersection points on this plane indicates the extent of centrality
of the camera calibration. Fig. 7 shows plots of the distributions
of the î ray intersections for each calibration method for each cam-
era. These plots are for the estimated camera centre and grid poses
after application of the linear estimation stage only and before
bundle adjustment is applied. It can be seen that the distribution
is highly non-Gaussian and non-isotropic for the omnidirectional
camera calibrated with the standard generic method. In contrast,
the distribution is both more compact and closer to Gaussian for
the same camera calibrated using the proposed method. The wide
distribution for the standard generic method may partly be a result
of inexact camera centrality, although the distribution for the pro-
posed generic method indicates that it achieves a solution that is
geometrically consistent with an approximately central configura-
tion. For the fisheye camera, the results using the two calibration
Fig. 7. Distribution of intersection points of best-fit rays for grids 1–3 with perpendicular
rays that intersect all three grids are considered. Note that the axes’ scales are smaller f
methods are very similar, although the distribution is marginally
closer to Gaussian for the proposed generic method. Isotropic
Gaussian distribution of the errors indicates that the camera centre
estimate and grid poses are in geometric agreement, with the error
resulting solely from the Gaussian noise in the intersection point
locations. The fisheye camera centre estimated in the proposed lin-
ear estimation stage is within the convex hull of the intersection
points. However this is not the case for the camera centre linearly
estimated using the standard method, indicating greater inconsis-
tency between the estimated camera centre and estimated grid
poses for that method.

5.1. Distortion correction

Two distortion correction experiments were carried out in order
to both qualitatively and quantitatively evaluate each of the cali-
bration methods.

In the first experiment the calibration data was used to remove
the inherent non-linear distortion from the calibrated regions of
images of real scenes. For the omnidirectional camera, a portion
of a cylindrical image was formed by intersecting the calibrated
rays with a unit cylinder, the axis of which was coincident with
the camera centre, and then unwrapping the cylinder to form a pla-
nar image. Fig. 8 shows the original images and the cylindrically
unwarped images calculated for the same pixels using the calibra-
tion data from the standard generic and proposed generic methods.
plane passing through estimated camera centre. Camera centre shown with +. Only
or the fisheye plots.
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As expected, real world straight lines that are parallel to the mirror
axis (vertical) are mapped to straight lines in the images corrected
using either method. However, some aberrations are visible in the
images corrected using the standard generic method. In contrast,
the corrected images formed using the proposed generic method
have less aberration. Ellipses highlight the regions where aberra-
tions are present in the distortion corrected images.

Distortion correction for the fisheye camera is best demon-
strated by generating perspectively corrected images from the
originals. This is readily achieved by intersecting the calibrated
camera rays with a plane whose orientation is determined as in
Section 4. The results after perspective correction using each cali-
bration dataset, and for the same image pixels, are shown in
Fig. 8. Omnidirectional camera distortion correction results: (a and b) original omnid
calibration; (e and f) cylindrically unwarped images after proposed generic calibration.
Fig. 9. Similarly to the distortion corrected omnidirectional images,
there are some visible aberrations in the images corresponding to
the meeting points of mis-estimated grids. This difference is most
noticeable in the image region highlighted with an ellipse in
Fig. 9d. The corresponding image region in Fig. 9f has less
aberration.

Quantitative evaluation of the calibrations was carried out by
generating perspectively corrected images of planar chessboard
grids. The plane onto which the corrected images were projected
was selected as described in Section 4. Distortion residuals were
measured for each image after applying a homography between
the distortion corrected image grid corners and the known metric
grid structure. Fig. 10 shows the distortion residuals for both the
irectional images; (c and d) cylindrically unwarped images after standard generic



Fig. 9. Fisheye camera distortion correction results: (a and b) original fisheye images; (c and d) perspectively corrected images after standard generic calibration; (e and f)
perspectively corrected images after proposed generic calibration.
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standard and proposed methods for both cameras. In the case of
the omnidirectional camera, no radial distortion bias is visible in
either vector plot, but the plots do display large divergences along
a roughly vertical line at the left of Fig. 10a and b. These coincide
with areas where two grids with mis-estimated pose meet, and
correspond to some of the aberrations seen in Fig. 8c–f. The diver-
gences for the omnidirectional camera seen in Fig. 10 and the dis-
tortion correction residuals given in Table 4 are smaller for the
vector plot using the proposed generic method than for the vector
plot using the standard generic method, indicating a better calibra-
tion. For the fisheye camera the distortion residual plots are almost
identical across the two calibration methods. The mean and stan-
dard deviation of the residuals for the fisheye camera using both
methods are also very similar, which is as expected given the sim-
ilarity in the bundle adjusted calibration values for each method
(see Table 2), and since the distortion corrected is applied to the
centre region of the image where the rays are determined by the
linear estimation stage alone.
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Fig. 10. Vector plots of residuals after perspective correction of a chessboard grid: omnidirectional camera using (a) standard generic method calibration data, and (b)
proposed generic method calibration data; fisheye camera using (c) standard generic method calibration data, and (d) proposed generic method calibration data. Distortion
corrected points are mapped to the same size metric grid for both cameras so as to enable direct comparison of the residuals. Vectors are scaled �25.
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5.2. Motion reconstruction

Motion reconstruction experiments were conducted with the
omnidirectional camera for the cases of pure translation and pure
rotation. The similarity of the results for the fisheye camera cali-
bration using the two calibration methods, and after applying bun-
dle adjustment, mean that any motion reconstruction experiments
would likely be too similar for the purpose of comparison.

The experimental setup consisted of a 3D calibration object
(two orthogonal planar chessboard grids) rigidly mounted on a
stage capable of controlled rotation and translation. For the trans-
lation experiment, the object was translated 100 mm in steps of
20 mm, and for the rotation experiment it was rotated by 110� in
steps of 10�. Point matches were extracted across both image se-
quences, and were used to index the Plücker matrix lookup tables
for each calibration method to get the corresponding ray direction
information. The essential matrix, E, between each image pair was
linearly estimated using the ray-based epipolar constraint

L0EL ¼ 0 ð18Þ

where L; L0 are the first three components of the Plücker vectors
derived from the Plücker matrices [19]. Rotations and translations
are extracted from the essential matrices according to [18]. The mo-
tion reconstruction results are shown in Fig. 11. It can be seen, and
Table 4
Residuals (mm) after distortion correction for omnidirectional and fisheye cameras
using standard and proposed generic methods.

Method Error type Omnidirectional Fisheye

Standard method Mean 1.96 1.54
SD 1.10 0.94

Proposed method Mean 1.83 1.55
SD 1.05 0.92
was verified numerically, that the motion estimated with the pro-
posed generic method is closer to linear in the case of translation,
and closer to the ground truth value of 110� in the case of rotation,
than for the standard generic method. For visualisation purposes
the differences between the average translation vector and the esti-
mated translation vectors are scaled �10 for each method.
6. Conclusions

This paper proposes an improved method of generic camera cal-
ibration for cameras with a single centre of projection. The main
contribution of the paper is a novel linear estimation stage based
on a new interpretation of an existing technique that allows pin-
hole calibration techniques to be applied to the generic calibration
of non-pinhole cameras. A performance evaluation of active grids
for use in generic calibration, and a linear pose estimation stage
for estimating the poses of additional grids in the calibration, are
also presented. Individual components of the proposed method
are separately evaluated using simulated data, with the results
clearly showing that the proposed generic method outperforms
the standard generic method in terms of accuracy and robustness
to noise. The complete proposed generic method is also evaluated
against the standard generic method using real data for both an
omnidirectional camera and a fisheye camera, with the results
for distortion correction and motion reconstruction tasks for the
omnidirectional camera demonstrating the improved performance
of the proposed generic method. For the real data, the proposed
linear estimation stage achieves results that are shown to be signif-
icantly closer to the final camera solution, thereby improving effi-
ciency by requiring less effort in bundle adjustment. It is concluded
that the proposed generic method should be used instead of the
standard generic method in order to attain the best results for
the generic calibration of central cameras.
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